
Accelerating the flow of value to 
customers requires the frictionless 
delivery of software in the form of 
infrastructure, code and data. Where 
are your sticking points?

Progressive 
Delivery

SCENARIO BOOK



2

You’re not releasing software at will

Releases are too large

You’re not confident that releases can be done safely 
and without downtime or disruption to your customers

You’re storing up changes until there is enough 
confidence to deploy but this creates a significant 
cost of delay

You know that work on testing, observability, 
monitoring, security, compliance and analytics are still 
considered at the end of the delivery process, rather 
than truly being a part of it

Your teams are becoming frustrated and demotivated 
by the interruption to flow

It takes a long time to find and recover from problems

You can’t turn features on and off or release to small, 
targeted customer segments

You don’t have data about how your customers use 
your software product features after they are released

You believe that your technical delivery practices are 
constraining the flow of customer value because:

Your scenario?

“There are times when it feels like we 
are paralysed, unable to release 
what we want, when we want. We 
need to remove the constraints 
urgently and reach a new level of 
maturity”





4

The inability to release at will is the result of 
historical constraints in your delivery 
system. Enterprises haven’t adapted the 
system quickly enough to take advantage of 
new technology and practices. We see the 
following patterns in our work:

What’s happening 
and why?

Legacy technology

Monolithic architecture makes individual components 
difficult to release separately. So the release you want to 
make to improve value for one component is intertwined 
with – and constrained by – other parts of the architecture. 
This lack of separation dramatically slows down the flow of 
value to targeted customer segments.

Big bangs, sporadic flow, bigger risk

Issues with legacy tech means that releases are necessarily 
much bigger than they need to be and so happen less often. 
There’s no continuous flow of value with ‘big bang’ releases. 

Big deployments are also much more complex, come with a 
higher risk of failure and have a greater impact on the 
operational part of the business. Manual intervention in 
deployment can be a recipe for a fat-fingered disaster.

Practices and processes

Speed is continuously prioritised over engineering discipline 
and this may result in operational and quality practices 
coming late in delivery or being ignored. For example:

▪ Containerised development workflow not used

▪ Infrastructure as Code not used to automate 
infrastructure

▪ Lack of layered test automation or poor quality tests

▪ Security and compliance checks not automated

▪ Inefficient code branching and merging strategy

▪ Feature flag management not in place to separate 
deployment from release

▪ Lack of DevOps thinking and pipeline management 

People and capability

We find that organisations generally have too few trusted 
engineers with the right Progressive Delivery capabilities 
and access to production. This creates a bottleneck and 
increases risk if certain processes are done manually.



5

What is Progressive 
Delivery?

CI/CD augmented

Continuous Integration (CI) and Continuous Delivery (CD) are 
well-known terms but Progressive Delivery adds a 
dimension of risk control and feedback. It allows you to 
release different elements and features of your product to 
defined audiences. 

Rather than features being deployed dark and turned on as a 
whole, Progressive Delivery enables the delivery of features 
to groups, regions or other demographics to assess fitness-
for-purpose, usage etc. 

There is a growing trend towards testing value hypotheses in 
production. So the aim is faster delivery into production with 
the ability to do more testing in production. Using 
Progressive Delivery techniques, this is much more 
achievable. 

Delivery to production is a technical concern while releases 
to customers is a business concern. Product managers can 
be empowered by having the tools to enable and disable 
features by location or audience demographics.



6

▪ The notion of quality is extended to include the 
automation of security, compliance, audit and 
documentation

▪ Evolvable delivery pipelines including templates to 
encourage consistency and reduce cognitive load on 
teams allowing them to focus on customer value

▪ Appropriate gates based on organisational context to 
support governance requirements

▪ Feature flag management to allow teams to deploy to 
all environments with decoupled controls on release. 
Release can be by feature to a defined audience of 
customers. This final capability being the essence of 
Progressive Delivery

▪ Use of DORA or flow metrics to guide improvement

What does good look like?

Progressive Delivery should allow you to frictionlessly 
release code to production when you want. It may not be 
every minute, but it’s hard to argue that you shouldn’t have 
the option. You should also be able to release only what you 
need to in order to meet your goals with different customers.

Getting to this point is not a magic leap, but it does require 
systemic thinking across several dimensions of software 
delivery. These include:

▪ Containerised development workflows that allow all 
team members to learn and experiment with fast 
feedback

▪ The ability to create and evolve cloud infrastructure 
through infrastructure as code from containerised 
local development through to production

▪ Architecture with appropriate patterns including 
separation of concerns and a clear expression of 
domains from a business perspective 

▪ Independently releasable services/components 
aligned to domains

▪ Leveraging a layered approach to test automation 
where quality and feedback is built in as early as 
possible



7



8

We can help you 
get there

Discovering your context
We use Situational Analysis to discover, among other things:

▪ The maturity level of delivery – your ability to release 
code into production, from software design to 
customer use

▪ The key constraints in delivery

▪ Your technology stack and toolset

▪ Your code, data and quality practices

We use our Improvement Model to baseline your maturity 
against benchmarks. You’ll see the gaps that need 
addressing.

We’re experts in helping enterprises mature 
their delivery practices to accelerate the 
flow of customer value. Through our work, 
we have developed the patterns and 
approaches that help us understand what 
good looks like in your context and the 
roadmap to get you there.

Starting your journey 
The practice gaps you should focus on closing might include, 
for example: 

▪ Containerising local development

▪ Improving layered test automation

▪ Automating infrastructure, deployment, testing, 
compliance and security in pipelines 

▪ Decoupling deployment from release with feature flags

▪ Helping platform teams create valuable reusable 
artefacts that product teams love to use

▪ Progressively delivering features to test with the right 
audiences

▪ Modernising architecture

https://hypr.nz/consulting/strategic-advisory#situational-analysis


9

Hybrid Teams – improving 
while delivering
We aim to improve the appropriate areas in stages through 
our ‘Hybrid Team’ model. We provide a small team of experts 
to work alongside your people on a real piece of work. We 
introduce the disciplines that improve delivery and, at the 
same time, give you the capability uplift that can then be 
taken across other teams. It works incredibly well. For the full 
benefits of this approach, see our dedicated Hybrid Teams 
Scenario Book.

Next steps
We’d love to help you mature your delivery practices. Every 
engagement is different and we can work together to create 
a Hybrid Team model that works in your context. Don’t 
hesitate to call us to explore this further. 

The Appendix at the end of this 
Scenario Book provides delivery 
practitioners with further detail on 
how we think about the key 
Progressive Delivery practices

https://hypr.nz/share/HYPR_HybridTeamsSB.pdf
https://hypr.nz/share/HYPR_HybridTeamsSB.pdf




11

Transition not transformation – Your enterprise operates 
in a VUCA (Volatile, Uncertain, Complex, Ambiguous) world. 
It needs to keep flying while making changes. We know from 
experience that transition is the only way you can do both.

Our people – We’re a diverse team with shared purpose and 
values. We have extensive skills across our consulting lines, 
from the very best software engineers to strategic experts 
able to engage at board level. They have lived at the coalface 
of change.

What makes us different?

Focus on flow – Progressive enterprises are focusing on 
finding and removing delays from their system through the 
practice of Value Stream Management (VSM). We’re a 
leading VSM consultancy helping enterprises in NZ and 
Australia.

Systems thinking – We take a systems-thinking approach 
to avoid local optimisations that contribute little to the whole.

Focus on your people – Technology and people are one 
system and two sides of the same coin. We focus as much on 
the social constructs and human networks as we do on the 
tech.

Why HYPR?

We can help you keep you on the right 
side of technology change and make the 
decisions that ensure your system 
accelerates the flow of customer value. 
Call us now…



12



13

DevOps (in general)

DevOps is a ‘culture’ best defined by observable behaviours, including 
psychological safety and working more collaboratively. DevOps shifts teams 
away from departmental project thinking to thinking about flow. It removes the 
divide between development and operations. A mature DevOps practice 
reduces tension between delivery throughput and system stability through 
automation and knowledge sharing. Benefits from implementing DevOps 
include: 

▪ Creation of a continuous learning and improvement culture

▪ Higher frequency and quality of deployments 

▪ Greater innovation and risk-taking ability through safe-to-fail 
experimentation 

▪ Better ability to identify the approaches that deliver faster time-to-
market 

▪ Reduced lead time for fixes

▪ Greater understanding of severity and frequency of release failures 

▪ Improved Mean Time to Recovery (MTTR) 

▪ Reduced key person risks and bottlenecks through decentralising 
control 

Creation of resilient, self-healing practices

To operate effectively at scale, software is typically distributed. Distributed 
systems provide many benefits but also unique challenges. Resilience can be 
thought of in two dimensions – technology/engineering resilience (maintaining 
the efficiency of function) and ecological resilience (maintaining the existence of 
function). Creating resilient, self-healing systems requires consideration of the 
following: 

▪ Understanding the highest-value improvements that can be made 

▪ Helping technologists understand that distributed systems are often 
non-deterministic. This helps create the right culture for change 

▪ Helping to improve the flow of information between development and 
operations 

▪ Understanding the role of architectural patterns in system resilience 

▪ Understanding that complexity is the enemy of resilience 

▪ Establishing Chaos Engineering Initiatives to help change behaviours 
towards hypothesis-based experimentation 

▪ Leveraging cloud technologies to eliminate single point of failures and 
fast recovery from any incident 

We aim to improve your practices and help your teams 
develop new skills across every aspect of delivery. Here’s 
more detail on how we think about some of them…

A
P

P
E

N
D

IX
More about 
Progressive Delivery 
practices



14

Automating delivery pipelines 

Continuous Delivery pipelines automate infrastructure, testing, 
deployment and release. A good practice here is to treat the 
platform itself as a product for which customers are the 
development teams. A product platform must be easy to use, 
easy to maintain and provide the fast, visible feedback that teams 
need to deliver, but also the flexibility to support diversity in 
teams. 

Using multiple pipelines – typically one per software component – also allows 
faster rollout of updated versions of each software component, rather than 
having to roll out the entire product as one single unit. Pipelines involve a lot 
more than just building and testing code in the modern development stack. 
They now need to incorporate security, malware and governance checks and 
move to continuous security, malware and governance postures, with additional 
focus on fit-for-purpose. Pipelines should provide the confidence that the 
product is secure, meets regulatory requirements and that features work as 
expected. They should also include proactive, automated updating of third-
party libraries for which new security patches are available. 

Layered Test Automation is essential in an effective pipeline. As with all 
technical practices, if not adopted properly, they can be ineffective and 
expensive. Experience helps guide a team to the best approach in their context, 
taking into consideration technology stack, current maturity, programming 
languages, software architecture, tools and delivery demands. See the more 
detailed section below on Layered Test Automation.

‘Shifting left’ should also be encouraged. Engineers then own the pipeline from 
source code to production and keep the pipeline fast by removing or re-
evaluating long-running processes. There are no ‘snowflake’ environments 
because all environments are the same. Creating environments that are as 

similar as possible as production, cost-permitting, allows teams to practise and 
identify problems before deployment. 

While delivery is continuous, release should be ‘on-demand’. This can be 
accomplished by using appropriate system design to make changes available at 
the right time and/or incrementally to assess overall system impact. Potential 
techniques may include feature toggles and similar, as well as authorisation 
based on policies or activities. 

These pipeline practices help teams know that features work today, tomorrow 
and in a year’s time. Improved feedback/fast feedback cycles promotes fast 
learning and gives teams confidence to evolve and refactor mercilessly, 
drastically cutting development time. Delivery to production can be reduced 
from months to days or even shorter. 



15

Continuous Integration and Continuous 
Delivery (CI/CD)

Continuous Delivery encourages teams to build software that can be deployed 
at any time. Deployment of code need not be continuous but practices in this 
domain should provide confidence that code that is built and packaged can be 
deployed safely and reliably. 

Central to Continuous Delivery is a delivery pipeline through which all code is 
sent. This pipeline incorporates commit, acceptance and production stages. As 
teams mature, both application code and infrastructure utilise pipelines to 
support the Build Quality in practice. 

There is a separation between delivery and release, the release being when a 
feature or features are actually provided to users. Separating these concerns 
helps identify where modern practices can be successfully adopted in order to 
simplify delivery processes and release value faster. Being able to deploy 
continuously and release on-demand enables the business to deliver business 
value in a controlled way at just the right time. 

Layered test automation 

Manual testing has value in exploratory testing and smoke testing but it’s not 
enough. Layered test automation, once applied well, speeds up the whole 
development process. Automated tests provide more immediate feedback 
when code is changed. They reduce the need for manual testing of simple 
scenarios so that testers can do more exploratory testing. They support 
refactoring, which is often needed to keep code clean and coherent, providing 
fast feedback if a change has unintended impacts. Comprehensive test suites of 
automated tests have multiple levels – see The Practical Test Pyramid.

Although Automated Testing is no longer optional, many organisations still 
struggle with Automated Testing or even quality practices in general. Some 
organisations don’t have any automated tests, yet are happy to spend over 50% 
of their development capacity on fixing defects, whether they be found 
internally or externally. 

The first step is always the hardest, but once automated tests are added to the 
Definition of Done (DoD) and once the tests are included in the Continuous 
Delivery Pipeline, there are a large number of types of tests that can be 
automated. Unit tests, now sometimes also referred to as ‘micro tests’, test a 
single function or class. If there are dependencies, these can be mocked. The 
code may need to be refactored to enable mocking, usually by using the 
concept of dependency injection (DI). Average duration per micro test is 
typically a micro second. 

Integration tests target a class or software component (eg. micro service), with 
their dependencies available as well. Tests in this space typically take longer to 
run (at times a few seconds) and they can be more expensive to maintain, so 
generally there are fewer of them. Other areas that can be automatically tested 
include performance, security, architectural compliance, etc. Even resilience 
when third-party systems may not be available can be tested automatically by 
simulating system outages or error conditions. 

In general, testing through the interface is less ideal. Tests are often costly to 
write and maintain. Often, the test suite becomes brittle and there tend to be 
intermittent test failures which may require investigation and manual 
intervention. Generally, the best option is to test at the lowest/smallest level if 
possible and move up to more expensive tests only if and when it is the only 
option. Tests through the user interface should remain the absolutely rare 
exception. 

It should also be noted that automated tests should not be written by dedicated 
people or teams. Instead, ideally, tests are written first, eg. based on acceptance 
criteria that form part of a feature. And those automated tests should be written 
by the developers who then implement the feature. Test Driven Development 
results in much simpler and better implementations and designs than test-first, 
let alone test-last. Quality must be built in rather than being tested in. 
Automated tests are just one of many quality practices that assist with this 
endeavour.



16

Performance engineering goals 

It is important to set realistic system performance goals. There is often a 
tendency of non-technical stakeholders to request that the system is as fast as 
possible, but performance always comes at a cost. By working with stakeholders 
to set objective, measurable goals, the performance of a system can be 
measured and the system engineered to meet just those goals, minimising the 
risk of over or under-engineering the system. Teams working on the system will 
need data from system telemetry to see the impact of changes in achieving 
those goals (avoiding regressions/understanding improvements). 

Infrastructure as Code

Manual testing has value in exploratory testing and smoke testing, but it’s not. 
Representing Infrastructure as Code has become the norm, in particular with 
the increase in popularity of public clouds such as AWS (Amazon Web Services), 
Azure and Google. Instead of making changes to the cloud infrastructure 
through a console or a portal, the desired state of the cloud infrastructure is 
described in a generic language. Tools are then used to apply the required 
changes and migrate to the desired state. Since these files are text files, they 
can easily be versioned to enable better lifecycle management of the 
infrastructure. For example, new resources can be provisioned automatically by 
changing a few lines of code. 

It’s often desirable to have a production environment (PROD), as well as other 
non-production environments such as User Acceptance Testing (UAT) or 
development (DEV). With infrastructure as code, it’s much easier to maintain 
multiple environments and keep infrastructure in sync. In addition, separating 
PROD from other environments assists with protecting the business, as well as 
customers’ data and with meeting regulatory requirements. 

Infrastructure as Code also plays a role in disaster recovery. In the unlikely event 
of an environment becoming unavailable, it’s possible to create a new 
environment, perhaps in a different region, very quickly. Other environments – 
such as temporary environments for product evaluation or demonstration 
purposes – can be also created and managed easily.



17

Gillian Clark – Director 
gillian@hypr.nz
+64 21 642 079

Gareth Evans – Director and 
Chief Engineering Officer
gareth@hypr.nz
+64 21 0227 6744

Ajay Blackshah – Chief 
Practices Officer
ajay@hypr.nz
+64 21 747 633

HYPR INNOVATION

GENERATOR NZ
Level 1, 22-28 Customs St East
Auckland Central
PO BOX 106-229
Auckland City 1143

www.hypr.nz

Are your delivery practices constraining the flow 
of customer value? Do you want to release 
software at will? With our help, you can make the 
shift to Progressive Delivery. Call us now…

Written by our team
Edited by Sian Hoskins
Design by Anam Berdugo, HYPR Creative Director

Thanks to all the clients and ‘Friends of HYPR’ who provided 
feedback and the pioneers of ideas and models that help us 
see things in new and different ways. 

© HYPR INNOVATION LTD 2024 All rights reserved 

We’re ready to help

mailto:gillian@hypr.nz
mailto:gareth@hypr.nz
mailto:ajay@hypr.nz
http://www.hypr.nz

